3GPP TSG-SA5 Meeting #154 	S5-241532
Changsha, China, 15 - 19 April 2024

Source:	Ericsson
Title:	Discussion paper on potential issue with OpenAPI datatype definitions
Document for:	Endorsement
Agenda Item:	6.3.14
1	Decision/action requested
The group is asked to take the information into account.
2	References
[1]	3GPP TS 32.156 Management and orchestration; Fixed Mobile Convergence (FMC) Model Repertoire
[2]	3GPP TS 32.160 Management and orchestration; Management service template
[3]	3GPP TS 32.622 Management and orchestration; Network Resource Model (NRM)
[4]	https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/
3	Rationale
Introduction
SA5 specifications allow the definition of a ‘CHOICE’ between attribute, as defined in [1]. In most cases these defined as dataypes, where the applicable attributes depend on which choice is selected.
For example, in [3] a choice of parameters to support reporting control is defined as datatype <<choice>> . An excerpt of which follows:
[bookmark: _Toc44516384][bookmark: _Toc45272699][bookmark: _Toc51754694][bookmark: _Toc153371434]4.3.33	ReportingCtrl <<choice>>
Attributes
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	CHOICE_1.1 fileReportingPeriod
	CM
	T
	T
	F
	T

	CHOICE_2.1 fileReportingPeriod
	CM
	T
	T
	F
	T

	CHOICE_2.2 notificationRecipientAddress
	CM
	T
	T
	F
	T

	CHOICE_3.1 fileReportingPeriod
	CM
	T
	T
	F
	T

	CHOICE_3.2 fileLocation
	CM
	T
	T
	F
	T

	CHOICE_4.1 streamTarget
	CM
	T
	T
	F
	T

The stage2 <<choice>> must be represented in both OpenAPI/yaml and NETCONF/yang solution sets.
For YANG, the solution set mappings rules defined in [2], clause 6.2.18 indicate choices are implemented using the yang ‘choice’ statement. An excerpt (condensed) of which follows from module _3gpp-common-yang-types.yang:
choice reportingCtrl {
…
	choice reporting-target {
 case file-target {
 leaf fileLocation {
 type string ;
…
}
There seems however not to be an explicit mapping rule defined for YAML in [2]. Perhaps because the use of ‘oneOf’ is an obvious solution to implement. An excerpt of which follows from TS28623_GenericNrm.yaml:
ReportingCtrl:
 oneOf:
 - type: object
 properties:
 fileReportingPeriod:
 type: integer
 - type: object
 properties:
 fileReportingPeriod:
 type: integer
 notificationRecipientAddress:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Uri'
 - type: object
 properties:
 fileReportingPeriod:
 type: integer
 fileLocation:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Uri'
 - type: object
 properties:
 streamTarget:
 $ref: 'TS28623_ComDefs.yaml#/components/schemas/Uri'

Potential issue
Feedback has been received from CT4 that there is a potential issue with SA5’s current use of ‘one of’. As currently defined the choice definitions will not resolve to a single option. This results in errors when trying to match only one of the choices.
An example, from TS28623_GenericNrm.yaml, helps to illustrates the specific issue:
Scope:
 oneOf:
 - type: object
 properties:
 scopeType:
 type: string
 enum:
 - BASE_ONLY
 - BASE_ALL
 - BASE_NTH_LEVEL
 - BASE_SUBTREE
 scopeLevel:
 type: integer
 - type: object
 properties:
 dataNodeSelector:
 type: string

The above definition will NOT resolve as expected. For example, a JSON instance of the above Scope object:
{
“dataNodeSelector”: “foo”
}
will match both “branches” of the “oneOf" keyword.

As a result, the JSON object example above will also match the first schema of the “oneOf" (having “scopeType” and “scopeLevel” attributes).
Similarly, the JSON object:
{
 “scopeType”: “BASE_ONLY”,
 “scopeLevel”: 1
}

will also match both branches inside “oneOf" (not only the 1st one, as expected, but also the 2nd one), meaning the schema evaluation of Scope will fail.
The above results were confirmed using the following schema validator: https://www.jsonschemavalidator.net/ which returns an error when using the SA5 example (as JSON schema) with the following input:
Input:
 {
 "scopeType": "BASE_ONLY",
 "scopeLevel": 1
 }
Result:
 Found 1 error(s)
 Message: JSON is valid against more than one schema from 'oneOf'. Valid schema indexes: 0, 1
 Schema path: #/one of
Similar issues have been seen, and are being addressed, in the OpenAPI defined in other 3GPP groups.
Scope of the issue
This potential issue appears in all YAML files which are using ‘oneOf’ in this manner. Some examples:
TS28623_GenericNrm.yaml: ReportingCtrl, Scope, AreaScope, SchedulingTime
TS28623_ComDefs.yaml: TimeWindow
TS28623_ManagementDataCollectionNrm.yaml: ManagementData
TS28623_FileManagementNrm.yaml: FileDownloadJobProcessMonitor/resultStateInfo
The actual number of files affected differs across releases.
Potential Solution
The solution requires that the schema be changed to ensure only schema matches the input. This can be done in multiple ways:
1. define at least one unique property as required, per choice (Recommended; more info below)
2. introduce a ‘discrimator’ whose value differentiates the choices. E.g. https://github.com/jdegre/5GC_APIs/issues/38.
3. redefine the schema, e.g. instead of ‘oneOf’ use ‘anyOf’ (see [4] for more info)
Investigation to date suggests that solution 1 (above) looks sufficient to address the issue for the majority (perhaps all) of the SA5 YAML definitions defining a choice. Specifically, by updating the YAML choices to define at least one unique property in each option will disambiguate the input and validate against only one of the schema.
Such changes will affect the required input so which specific properties should be required will need to be determined on a case-by-case basis. If only one property per choice is updated to be required in stage3 it should be one defined as a mandatory attribute in the stage2. Alternatively all mandatory properties could also be defined as required.
The actual impact to OpenAPI consumers should be minimal regardless since they should already be providing the parameters defined as mandatory in stage2.
For the example above, this could be resolved by the changes in bold:
Scope:
 oneOf:
 - type: object
 properties:
 scopeType:
 type: string
 enum:
 - BASE_ONLY
 - BASE_ALL
 - BASE_NTH_LEVEL
 - BASE_SUBTREE
 scopeLevel:
 type: integer
 required:
 - scopeType
 - type: object
 properties:
 dataNodeSelector:
 type: string
 required:
 - dataNodeSelector

The modified schema produces the expected result from the same schema validator:
Input:
 {
 "scopeType": "BASE_ONLY",
 "scopeLevel": 1
 }
Result:
 No errors found. JSON validates against the schema

Conclusion
The above issue needs to be confirmed by SA5.
A decision needs to be made to address this issue in the SA5 OpenAPI definitions.
Updates will need to be applied all existing stage3 YAML with such ‘oneOf’ definitions in Rel16, Rel17, and Rel18.
4	Detailed proposal
The group is asked to endorse that this issue needs to be resolved.
If endorsed, CRs will be submitted to SA5#155 to address this as follows:
· update YAML mapping rules to clarify how <<choice>> is implemented for OpenAPI solution set:
· working assumption is solution 1 will be used
· update all YAML files containing this issue:
· Rel-16
· Rel-17
· Rel-18
· Rel-19 (if applicable for SA5#155)
